Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Commun Biol ; 7(1): 567, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745046

RESUMEN

Lymph node metastasis, primarily caused by the migration of oral squamous cell carcinoma (OSCC) cells, stands as a crucial prognostic marker. We have previously demonstrated that EP4, a subtype of the prostaglandin E2 (PGE2) receptor, orchestrates OSCC cell migration via Ca2+ signaling. The exact mechanisms by which EP4 influences cell migration through Ca2+ signaling, however, is unclear. Our study aims to clarify how EP4 controls OSCC cell migration through this pathway. We find that activating EP4 with an agonist (ONO-AE1-473) increased intracellular Ca2+ levels and the migration of human oral cancer cells (HSC-3), but not human gingival fibroblasts (HGnF). Further RNA sequencing linked EP4 to calmodulin-like protein 6 (CALML6), whose role remains undefined in OSCC. Through protein-protein interaction network analysis, a strong connection is identified between CALML6 and calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), with EP4 activation also boosting mitochondrial function. Overexpressing EP4 in HSC-3 cells increases experimental lung metastasis in mice, whereas inhibiting CaMKK2 with STO-609 markedly lowers these metastases. This positions CaMKK2 as a potential new target for treating OSCC metastasis. Our findings highlight CALML6 as a pivotal regulator in EP4-driven mitochondrial respiration, affecting cell migration and metastasis via the CaMKK2 pathway.


Asunto(s)
Carcinoma de Células Escamosas , Movimiento Celular , Mitocondrias , Neoplasias de la Boca , Subtipo EP4 de Receptores de Prostaglandina E , Humanos , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Mitocondrias/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/genética , Animales , Ratones , Línea Celular Tumoral , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Calmodulina/metabolismo , Calmodulina/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
2.
Front Endocrinol (Lausanne) ; 15: 1334342, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469147

RESUMEN

Early-onset obesity is a rising health concern influenced by heredity. However, many monogenic obesity variants (MOVs) remain to be discovered due to differences in ethnicity and culture. Additionally, patients with known MOVs have shown limited weight loss after bariatric surgery, suggesting it can be used as a screening tool for new candidates. In this study, we performed whole-exome sequencing (WES) combined with postoperative data to detect candidate MOVs in a cohort of 62 early-onset obesity and 9 late-onset obesity patients. Our findings demonstrated that patients with early-onset obesity preferred a higher BMI and waist circumference (WC). We confirmed the efficacy of the method by identifying a mutation in known monogenic obesity gene, PCSK1, which resulted in less weight loss after surgery. 5 genes were selected for further verification, and a frameshift variant in CAMKK2 gene: NM_001270486.1, c.1614dup, (p. Gly539Argfs*3) was identified as a novel candidate MOV. This mutation influenced the improvement of metabolism after bariatric surgery. In conclusion, our data confirm the efficacy of WES combined with postoperative data in detecting novel candidate MOVs and c.1614dup (CAMKK2) might be a promising MOV, which needs further confirmation. This study enriches the human monogenic obesity mutation database and provides a scientific basis for clinically accurate diagnosis and treatment.


Asunto(s)
Mutación del Sistema de Lectura , Obesidad , Humanos , Secuenciación del Exoma , Obesidad/genética , Obesidad/cirugía , Mutación , Pérdida de Peso , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética
3.
Cell Calcium ; 117: 102820, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37979343

RESUMEN

Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) phosphorylates and activates downstream protein kinases, including CaMKI, CaMKIV, PKB/Akt, and AMPK; thus, regulates various Ca2+-dependent physiological and pathophysiological pathways. Further, CaMKKß/2 in mammalian species comprises multiple alternatively spliced variants; however, their functional differences or redundancy remain unclear. In this study, we aimed to characterize mouse CaMKKß/2 splice variants (CaMKKß-3 and ß-3x). RT-PCR analyses revealed that mouse CaMKKß-1, consisting of 17 exons, was predominantly expressed in the brain; whereas, mouse CaMKKß-3 and ß-3x, lacking exon 16 and exons 14/16, respectively, were primarily expressed in peripheral tissues. At the protein level, the CaMKKß-3 or ß-3x variants showed high expression levels in mouse cerebrum and testes. This was consistent with the localization of CaMKKß-3/-3x in spermatids in seminiferous tubules, but not the localization of CaMKKß-1. We also observed the co-localization of CaMKKß-3/-3x with a target kinase, CaMKIV, in elongating spermatids. Biochemical characterization further revealed that CaMKKß-3 exhibited Ca2+/CaM-induced kinase activity similar to CaMKKß-1. Conversely, we noted that CaMKKß-3x impaired Ca2+/CaM-binding ability, but exhibited significantly weak autonomous activity (approximately 500-fold lower than CaMKKß-1 or ß-3) due to the absence of C-terminal of the catalytic domain and a putative residue (Ile478) responsible for the kinase autoinhibition. Nevertheless, CaMKKß-3x showed the ability to phosphorylate downstream kinases, including CaMKIα, CaMKIV, and AMPKα in transfected cells comparable to CaMKKß-1 and ß-3. Collectively, CaMKKß-3/-3x were identified as functionally active and could be bona fide CaMKIV-kinases in testes involved in the activation of the CaMKIV cascade in spermatids, resulting in the regulation of spermiogenesis.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Espermátides , Masculino , Ratones , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Espermátides/metabolismo , Fosforilación , Transducción de Señal , Procesamiento Proteico-Postraduccional , Mamíferos/metabolismo
4.
J Transl Med ; 21(1): 900, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082327

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) accounts for about 15% of primary liver cancer, and the incidence rate has been rising in recent years. Surgical resection is the best treatment for ICC, but the 5-year survival rate is less than 30%. ICC signature genes are crucial for the early diagnosis of ICC, so it is especially important to find its signature genes and therapeutic drug. Here, we studied that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the occurrence and metastasis of intrahepatic cholangiocarcinoma through Wnt/ß-catenin signal pathway. METHODS: IC50 of bufalin in ICC cells was determined by CCK8 and invasive and migratory abilities were verified by wound healing, cell cloning, transwell and Western blot. IF and IHC verified the expression of CAMKK2 between ICC patients and normal subjects. BLI and pull-down demonstrated the binding ability of bufalin and CAMKK2. Bioinformatics predicted whether CAMKK2 was related to the Wnt/ß-catenin pathway. SKL2001, an activator of ß-catenin, verified whether bufalin acted through this pathway. In vitro and in vivo experiments verified whether overexpression of CAMKK2 affects the proliferative and migratory effects of ICC. Transmission electron microscopy verified mitochondrial integrity. Associated Ca2+ levels verified the biological effects of ANXA2 on ICC. RESULTS: It was found that bufalin inhibited the proliferation and migration of ICC, and CAMKK2 was highly expressed in ICC, and its high expression was positively correlated with poor prognosis.CAMKK2 is a direct target of bufalin, and is associated with the Wnt/ß-catenin signaling pathway, which was dose-dependently decreased after bufalin treatment. In vitro and in vivo experiments verified that CAMKK2 overexpression promoted ICC proliferation and migration, and bufalin reversed this effect. CAMKK2 was associated with Ca2+, and changes in Ca2+ content induced changes in the protein content of ANXA2, which was dose-dependently decreasing in cytoplasmic ANXA2 and dose-dependently increasing in mitochondrial ANXA2 after bufalin treatment. In CAMKK2 overexpressing cells, ANXA2 was knocked down, and we found that reversal of CAMKK2 overexpression-induced enhancement of ICC proliferation and migration after siANXA2. CONCLUSIONS: Our results suggest that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the proliferation and migration of intrahepatic cholangiocarcinoma through Wnt/ß-catenin signal pathway. Thus, bufalin, as a drug, may also be used for cancer therapy in ICC in the future.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Enfermedades Mitocondriales , Humanos , Vía de Señalización Wnt , beta Catenina/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Enfermedades Mitocondriales/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo
5.
Nat Commun ; 14(1): 8391, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110408

RESUMEN

Exercise is an effective non-pharmacological strategy for ameliorating nonalcoholic fatty liver disease (NAFLD), but the underlying mechanism needs further investigation. Cysteine dioxygenase type 1 (Cdo1) is a key enzyme for cysteine catabolism that is enriched in liver, whose role in NAFLD remains poorly understood. Here, we show that exercise induces the expression of hepatic Cdo1 via the cAMP/PKA/CREB signaling pathway. Hepatocyte-specific knockout of Cdo1 (Cdo1LKO) decreases basal metabolic rate of the mice and impairs the effect of exercise against NAFLD, whereas hepatocyte-specific overexpression of Cdo1 (Cdo1LTG) increases basal metabolic rate of the mice and synergizes with exercise to ameliorate NAFLD. Mechanistically, Cdo1 tethers Camkk2 to AMPK by interacting with both of them, thereby activating AMPK signaling. This promotes fatty acid oxidation and mitochondrial biogenesis in hepatocytes to attenuate hepatosteatosis. Therefore, by promoting hepatic Camkk2-AMPK signaling pathway, Cdo1 acts as an important downstream effector of exercise to combat against NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo
6.
Mol Psychiatry ; 28(11): 4500-4511, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37730845

RESUMEN

Current pharmacological treatments for bipolar disorder are inadequate and based on serendipitously discovered drugs often with limited efficacy, burdensome side-effects, and unclear mechanisms of action. Advances in drug development for the treatment of bipolar disorder remain incremental and have come largely from repurposing drugs used for other psychiatric conditions, a strategy that has failed to find truly revolutionary therapies, as it does not target the mood instability that characterises the condition. The lack of therapeutic innovation in the bipolar disorder field is largely due to a poor understanding of the underlying disease mechanisms and the consequent absence of validated drug targets. A compelling new treatment target is the Ca2+-calmodulin dependent protein kinase kinase-2 (CaMKK2) enzyme. CaMKK2 is highly enriched in brain neurons and regulates energy metabolism and neuronal processes that underpin higher order functions such as long-term memory, mood, and other affective functions. Loss-of-function polymorphisms and a rare missense mutation in human CAMKK2 are associated with bipolar disorder, and genetic deletion of Camkk2 in mice causes bipolar-like behaviours similar to those in patients. Furthermore, these behaviours are ameliorated by lithium, which increases CaMKK2 activity. In this review, we discuss multiple convergent lines of evidence that support targeting of CaMKK2 as a new treatment strategy for bipolar disorder.


Asunto(s)
Trastorno Bipolar , Animales , Humanos , Ratones , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Mutación Missense
7.
J Neurovirol ; 29(3): 241-251, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37166584

RESUMEN

HIV-associated sensory neuropathy (HIV-SN) affects 14-38% of HIV+ individuals stable on therapy with no neurotoxic drugs. Polymorphisms in CAMKK2, P2X7R and P2X4R associated with altered risk of HIV-SN in Indonesian and South African patients. The role of CaMKK2 in neuronal repair makes this an attractive candidate, but a direct role for any protein is predicated on expression in affected tissues. Here, we describe expression of CaMKK2, P2X7R and P2X4R proteins in skin biopsies from the lower legs of HIV+ Indonesians with and without HIV-SN, and healthy controls (HC). HIV-SN was diagnosed using the Brief Peripheral Neuropathy Screen. Biopsies were stained to detect protein gene product 9.5 on nerve fibres and CaMKK2, P2X7R or P2X4R, and were examined using 3-colour sequential scanning confocal microscopy. Intraepidermal nerve fibre densities (IENFD) were lower in HIV+ donors than HC and correlated directly with nadir CD4 T-cell counts (r = 0.69, p = 0.004). However, IENFD counts were similar in HIV-SN+ and HIV-SN- donors (p = 0.19) and so did not define neuropathy. CaMKK2+ cells were located close to dermal and epidermal nerve fibres and were rare in HC and HIV-SN- donors, consistent with a role for the protein in nerve damage and/or repair. P2X7R was expressed by cells in blood vessels of HIV-SN- donors, but rarely in HC or HIV-SN+ donors. P2X4R expression by cells in the epidermal basal layer appeared greatest in HIV-SN+ donors. Overall, the differential expression of CaMKK2, P2X7R and P2X4R supports the genetic evidence of a role for these proteins in HIV-SN.


Asunto(s)
Infecciones por VIH , Enfermedades del Sistema Nervioso Periférico , Humanos , Infecciones por VIH/complicaciones , Infecciones por VIH/genética , Infecciones por VIH/diagnóstico , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/complicaciones , Piel , Biopsia , Polimorfismo de Nucleótido Simple , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética
8.
Osteoarthritis Cartilage ; 31(7): 908-918, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36858195

RESUMEN

OBJECTIVE: To investigate the role of calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) in human osteoarthritis. MATERIALS AND METHODS: Paired osteochondral plugs and articular chondrocytes were isolated from the relatively healthier (intact) and damaged portions of human femoral heads collected from patients undergoing total hip arthroplasty for primary osteoarthritis (OA). Cartilage from femoral plugs were either flash frozen for gene expression analysis or histology and immunohistochemistry. Chondrocyte apoptosis in the presence or absence of CAMKK2 inhibition was measured using flow cytometry. CAMKK2 overexpression and knockdown in articular chondrocytes were achieved via Lentivirus- and siRNA-mediated approaches respectively, and their effect on pro-apoptotic and cartilage catabolic mechanisms was assessed by immunoblotting. RESULTS: CAMKK2 mRNA and protein levels were elevated in articular chondrocytes from human OA cartilage compared to paired healthier intact samples. This increase was associated with elevated catabolic marker matrix metalloproteinase 13 (MMP-13), and diminished anabolic markers aggrecan (ACAN) and type II collagen (COL2A1) levels. OA chondrocytes displayed enhanced apoptosis, which was suppressed following pharmacological inhibition of CAMKK2. Levels of MMP13, pSTAT3, and the pro-apoptotic marker BAX became elevated when CAMKK2, but not its kinase-defective mutant was overexpressed, whereas knockdown of the kinase decreased the levels of these proteins. CONCLUSIONS: CAMKK2 is upregulated in human OA cartilage and is associated with elevated levels of pro-apoptotic and catabolic proteins. Inhibition or knockdown of CAMKK2 led to decreased chondrocyte apoptosis and catabolic protein levels, whereas its overexpression elevated them. CAMKK2 may be a therapeutic target to prevent or mitigate human OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Condrocitos/metabolismo , Cartílago Articular/patología , Células Cultivadas , Osteoartritis/metabolismo , Apoptosis , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética
9.
J Agric Food Chem ; 71(9): 4091-4100, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36820528

RESUMEN

The current study investigated the effect of preslaughter transport on stress response and meat quality of broilers and explored the underlying mechanisms involved in the regulation of muscle glycolysis through calcium/calmodulin-dependent protein kinase kinase (CaMKK)/AMP-activated protein kinase (AMPK) signaling. Results suggested that transport induced stress responses of broilers and caused PSE-like syndrome of pectoralis major muscle. Preslaughter transport enhanced the mRNA expressions of glycogen phosphorylase and glucose transporters, as well as the activities of glycolytic enzymes, which accelerated the breakdown of glycolytic substrates and the accumulation of lactic acid. In addition, acute stress induced abnormal intracellular calcium homeostasis by disrupting calcium channels on the cell membrane and sarcoplasmic reticulum, which led to the activation of CaMKK and promoted AMPK phosphorylation. This study provides evidence that the intracellular calcium overload and the enhancement of CaMKK/AMPK signaling are related to the accelerated muscle glycolysis of broiler chickens subjected to acute stress.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Pollos , Animales , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Pollos/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Calcio/metabolismo , Glucólisis , Músculos Pectorales/metabolismo , Calcio de la Dieta/metabolismo , Aceleración
10.
Zhongguo Zhong Yao Za Zhi ; 48(1): 193-201, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-36725271

RESUMEN

Alcoholic liver disease(ALD), with its increasing morbidity and mortality, has seriously and extensively affected the health of people worldwide. Methyl ferulic acid(MFA) has been proven to significantly inhibit alcohol-induced lipid production in L02 cells through the AMP-activated protein kinase(AMPK) pathway, but its in-depth mechanism remains unclear. This study aimed to further clarify the mechanism of MFA in improving lipid accumulation in L02 cells through the microRNA-378b(miR-378b)-mediated calcium/calmodulin-dependent protein kinase kinase 2(CaMKK2)-AMPK signaling pathway based on existing researches. L02 cells were induced by 100 mmol·L~(-1) ethanol for 48 h to establish the model of ALD in vitro, and 100, 50, and 25 µmol·L~(-1) concentration of MFA was treated. MiR-378b plasmids(containing the overexpression plasmid-miR-378b mimics, silence plasmid-miR-378b inhibitor, and their respective negative control-miR-378b NCs) were transfected into L02 cells by electroporation to up-regulate or down-regulate the levels of miR-378b in L02 cells. The levels of total cholesterol(TC) and triglyceride(TG) in cells were detected by commercial diagnostic kits and automatic biochemical analyzers. The expression levels of miR-378b in L02 cells were detected by real-time quantitative polymerase chain reaction(qRT-PCR). CaMKK2 mRNA levels were detected by PCR, and protein expressions of related factors involved in lipid synthesis, decomposition, and transport in lipid metabolism were detected by Western blot. The results displayed that ethanol significantly increased TG and TC levels in L02 cells, while MFA decreased TG and TC levels. Ethanol up-regulated the miR-378b level, while MFA effectively inhibited the miR-378b level. The overexpression of miR-378b led to lipid accumulation in ethanol-induced L02 cells, while the silence of miR-378b improved the lipid deposition induced by ethanol. MFA activated the CaMKK2-AMPK signaling pathway by lowering miR-378b, thus improving lipid synthesis, decomposition, and transport, which improved lipid deposition in L02 cells. This study shows that MFA improves lipid deposition in L02 cells by regulating the CaMKK2-AMPK pathway through miR-378b.


Asunto(s)
Hígado Graso , MicroARNs , Humanos , Etanol/toxicidad , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Triglicéridos , MicroARNs/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética
11.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-970514

RESUMEN

Alcoholic liver disease(ALD), with its increasing morbidity and mortality, has seriously and extensively affected the health of people worldwide. Methyl ferulic acid(MFA) has been proven to significantly inhibit alcohol-induced lipid production in L02 cells through the AMP-activated protein kinase(AMPK) pathway, but its in-depth mechanism remains unclear. This study aimed to further clarify the mechanism of MFA in improving lipid accumulation in L02 cells through the microRNA-378b(miR-378b)-mediated calcium/calmodulin-dependent protein kinase kinase 2(CaMKK2)-AMPK signaling pathway based on existing researches. L02 cells were induced by 100 mmol·L~(-1) ethanol for 48 h to establish the model of ALD in vitro, and 100, 50, and 25 μmol·L~(-1) concentration of MFA was treated. MiR-378b plasmids(containing the overexpression plasmid-miR-378b mimics, silence plasmid-miR-378b inhibitor, and their respective negative control-miR-378b NCs) were transfected into L02 cells by electroporation to up-regulate or down-regulate the levels of miR-378b in L02 cells. The levels of total cholesterol(TC) and triglyceride(TG) in cells were detected by commercial diagnostic kits and automatic biochemical analyzers. The expression levels of miR-378b in L02 cells were detected by real-time quantitative polymerase chain reaction(qRT-PCR). CaMKK2 mRNA levels were detected by PCR, and protein expressions of related factors involved in lipid synthesis, decomposition, and transport in lipid metabolism were detected by Western blot. The results displayed that ethanol significantly increased TG and TC levels in L02 cells, while MFA decreased TG and TC levels. Ethanol up-regulated the miR-378b level, while MFA effectively inhibited the miR-378b level. The overexpression of miR-378b led to lipid accumulation in ethanol-induced L02 cells, while the silence of miR-378b improved the lipid deposition induced by ethanol. MFA activated the CaMKK2-AMPK signaling pathway by lowering miR-378b, thus improving lipid synthesis, decomposition, and transport, which improved lipid deposition in L02 cells. This study shows that MFA improves lipid deposition in L02 cells by regulating the CaMKK2-AMPK pathway through miR-378b.


Asunto(s)
Humanos , Etanol/toxicidad , Proteínas Quinasas Activadas por AMP/metabolismo , Hígado Graso , Triglicéridos , MicroARNs/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética
12.
Nat Commun ; 13(1): 6483, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309495

RESUMEN

Glioblastoma (GBM) is notorious for its immunosuppressive tumor microenvironment (TME) and is refractory to immune checkpoint blockade (ICB). Here, we identify calmodulin-dependent kinase kinase 2 (CaMKK2) as a driver of ICB resistance. CaMKK2 is highly expressed in pro-tumor cells and is associated with worsened survival in patients with GBM. Host CaMKK2, specifically, reduces survival and promotes ICB resistance. Multimodal profiling of the TME reveals that CaMKK2 is associated with several ICB resistance-associated immune phenotypes. CaMKK2 promotes exhaustion in CD8+ T cells and reduces the expansion of effector CD4+ T cells, additionally limiting their tumor penetrance. CaMKK2 also maintains myeloid cells in a disease-associated microglia-like phenotype. Lastly, neuronal CaMKK2 is required for maintaining the ICB resistance-associated myeloid phenotype, is deleterious to survival, and promotes ICB resistance. Our findings reveal CaMKK2 as a contributor to ICB resistance and identify neurons as a driver of immunotherapeutic resistance in GBM.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Linfocitos T CD8-positivos , Microambiente Tumoral , Terapia de Inmunosupresión , Neuronas/patología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética
13.
Nat Commun ; 13(1): 4444, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915085

RESUMEN

During the early stages of Alzheimer's disease (AD) in both mouse models and human patients, soluble forms of Amyloid-ß 1-42 oligomers (Aß42o) trigger loss of excitatory synapses (synaptotoxicity) in cortical and hippocampal pyramidal neurons (PNs) prior to the formation of insoluble amyloid plaques. In a transgenic AD mouse model, we observed a spatially restricted structural remodeling of mitochondria in the apical tufts of CA1 PNs dendrites corresponding to the dendritic domain where the earliest synaptic loss is detected in vivo. We also observed AMPK over-activation as well as increased fragmentation and loss of mitochondrial biomass in Ngn2-induced neurons derived from a new APPSwe/Swe knockin human ES cell line. We demonstrate that Aß42o-dependent over-activation of the CAMKK2-AMPK kinase dyad mediates synaptic loss through coordinated phosphorylation of MFF-dependent mitochondrial fission and ULK2-dependent mitophagy. Our results uncover a unifying stress-response pathway causally linking Aß42o-dependent structural remodeling of dendritic mitochondria to synaptic loss.


Asunto(s)
Enfermedad de Alzheimer , Mitofagia , Proteínas Quinasas Activadas por AMP/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Dinámicas Mitocondriales , Fragmentos de Péptidos , Sinapsis/metabolismo
14.
Cells ; 11(12)2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35741020

RESUMEN

Despite early studies linking calcium-calmodulin protein kinase kinase 2 (CAMKK2) to prostate cancer cell migration and invasion, the role of CAMKK2 in metastasis in vivo remains unclear. Moreover, while CAMKK2 is known to regulate systemic metabolism, whether CAMKK2's effects on whole-body metabolism would impact prostate cancer progression and/or related comorbidities is not known. Here, we demonstrate that germline ablation of Camkk2 slows, but does not stop, primary prostate tumorigenesis in the TRansgenic Adenocarcinoma Mouse Prostate (TRAMP) genetic mouse model. Consistent with prior epidemiological reports supporting a link between obesity and prostate cancer aggressiveness, TRAMP mice fed a high-fat diet exhibited a pronounced increase in the colonization of lung metastases. We demonstrated that this effect on the metastatic spread was dependent on CAMKK2. Notably, diet-induced lung metastases exhibited a highly aggressive neuroendocrine phenotype. Concurrently, Camkk2 deletion improved insulin sensitivity in the same mice. Histological analyses revealed that cancer cells were smaller in the TRAMP;Camkk2-/- mice compared to TRAMP;Camkk2+/+ controls. Given the differences in circulating insulin levels, a known regulator of cell growth, we hypothesized that systemic CAMKK2 could promote prostate cancer cell growth and disease progression in part through cancer cell-extrinsic mechanisms. Accordingly, host deletion of Camkk2 impaired the growth of syngeneic murine prostate tumors in vivo, confirming nonautonomous roles for CAMKK2 in prostate cancer. Cancer cell size and mTOR signaling was diminished in tumors propagated in Camkk2-null mice. Together, these data indicate that, in addition to cancer cell-intrinsic roles, CAMKK2 mediates prostate cancer progression via tumor-extrinsic mechanisms. Further, we propose that CAMKK2 inhibition may also help combat common metabolic comorbidities in men with advanced prostate cancer.


Asunto(s)
Adenocarcinoma , Resistencia a la Insulina , Neoplasias Pulmonares , Neoplasias de la Próstata , Adenocarcinoma/patología , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Carcinogénesis/patología , Transformación Celular Neoplásica , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Transgénicos , Neoplasias de la Próstata/patología , Proteínas Quinasas
15.
Mol Metab ; 62: 101513, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35562082

RESUMEN

OBJECTIVE: The liver is the primary internal metabolic organ that coordinates whole body energy homeostasis in response to feeding and fasting. Genetic ablation or pharmacological inhibition of calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) has been shown to significantly improve hepatic health and peripheral insulin sensitivity upon overnutrition with high fat diet. However, the precise molecular underpinnings that explain this metabolic protection have remained largely undefined. METHODS: To characterize the role of CaMKK2 in hepatic metabolism, we developed and challenged liver-specific CaMKK2 knockout (CaMKK2LKO) mice with high fat diet and performed glucose and insulin tolerance tests to evaluate peripheral insulin sensitivity. We used a combination of RNA-Sequencing, glucose and fatty acid istotopic tracer studies, a newly developed Seahorse assay for measuring the oxidative capacity of purified peroxisomes, and a degenerate peptide libarary to identify putative CaMKK2 substrates that mechanistically explain the protective effects of hepatic CaMKK2 ablation. RESULTS: Consistent with previous findings, we show that hepatic CaMKK2 ablation significantly improves indices of peripheral insulin sensitivity. Mechanistically, we found that CaMKK2 phosphorylates and regulates GAPDH to promote glucose metabolism and PEX3 to blunt peroxisomal fatty acid catabolism in the liver. CONCLUSION: CaMKK2 is a central metabolic fuel sensor in the liver that significantly contributes to whole body systems metabolism.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Resistencia a la Insulina , Animales , Calcio/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Ácidos Grasos , Glucosa/metabolismo , Resistencia a la Insulina/fisiología , Ratones
16.
FEBS J ; 289(19): 5971-5984, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35490408

RESUMEN

Calcium/calmodulin-dependent protein kinase kinases (CaMKKs) activate CaMKI, CaMKIV, protein kinase B/Akt, and AMP-activated protein kinase (AMPK) by phosphorylating Thr residues in activation loops to mediate various Ca2+ -signaling pathways. Mammalian cells expressing CaMKKα and CaMKKß lacking Arg/Pro-rich insert domain (RP-domain) sequences showed impaired phosphorylation of AMPKα, CaMKIα, and CaMKIV, whereas the autophosphorylation activities of CaMKK mutants remained intact and were similar to those of wild-type CaMKKs. Liver kinase B1 (LKB1, an AMPK kinase) complexed with STRAD and MO25 and was unable to phosphorylate CaMKIα and CaMKIV; however, mutant LKB1 with the RP-domain sequences of CaMKKα and CaMKKß inserted between kinase subdomains II and III acquired CaMKIα and CaMKIV phosphorylating activity in vitro and in transfected cultured cells. Furthermore, ionomycin-induced phosphorylation of hemagglutinin (HA)-CaMKIα at Thr177, HA-CaMKIV at Thr196, and HA-AMPKα at Thr172 in transfected cells was significantly suppressed by cotransfection of kinase-dead mutants of CaMKK isoforms, but these dominant-negative effects were abrogated with RP-deletion mutants, suggesting that sequestration of substrate kinases by loss-of-function CaMKK mutants requires the RP-domain. This was confirmed by pulldown experiments that showed that dominant-negative mutants of CaMKKα and CaMKKß interact with target kinases but not RP-deletion mutants. Taken together, these results clearly indicate that both CaMKK isoforms require the RP-domain to recognize downstream kinases to interact with and phosphorylate Thr residues in their activation loops. Thus, the RP-domain may be a promising target for specific CaMKK inhibitors.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Proteínas Proto-Oncogénicas c-akt , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Calcio/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/química , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Hemaglutininas , Ionomicina , Mamíferos/metabolismo , Fosforilación , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
17.
Cell Mol Life Sci ; 79(5): 249, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35438341

RESUMEN

BACKGROUND: The Ca2+/calmodulin-dependent protein kinase kinases (CaMKKs) are serine/threonine-directed protein kinases that are activated following increases in intracellular calcium, playing a critical role in neuronal signaling. Inner-ear-trauma-induced calcium overload in sensory hair cells has been well documented in the pathogenesis of traumatic noise-induced hair cell death and hearing loss, but there are no established pharmaceutical therapies available due to a lack of specific therapeutic targets. In this study, we investigated the activation of CaMKKß in the inner ear after traumatic noise exposure and assessed the prevention of noise-induced hearing loss (NIHL) with RNA silencing. RESULTS: Treatment with short hairpin RNA of CaMKKß (shCaMKKß) via adeno-associated virus transduction significantly knocked down CaMKKß expression in the inner ear. Knockdown of CaMKKß significantly attenuated noise-induced hair cell loss and hearing loss (NIHL). Additionally, pretreatment with naked CaMKKß small interfering RNA (siCaMKKß) attenuated noise-induced losses of inner hair cell synapses and OHCs and NIHL. Furthermore, traumatic noise exposure activates CaMKKß in OHCs as demonstrated by immunolabeling for p-CaMKI. CaMKKß mRNA assessed by fluorescence in-situ hybridization and immunolabeling for CaMKKß in OHCs also increased after the exposure. Finally, pretreatment with siCaMKKß diminished noise-induced activation of AMPKα in OHCs. CONCLUSIONS: These findings demonstrate that traumatic-noise-induced OHC loss and hearing loss occur primarily via activation of CaMKKß. Targeting CaMKKß is a key strategy for prevention of noise-induced hearing loss. Furthermore, our data suggest that noise-induced activation of AMPKα in OHCs occurs via the CaMKKß pathway.


Asunto(s)
Sordera , Pérdida Auditiva Provocada por Ruido , Proteínas Quinasas Activadas por AMP/metabolismo , Calcio/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Muerte Celular , Sordera/metabolismo , Cabello/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patología , Pérdida Auditiva Provocada por Ruido/etiología , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva Provocada por Ruido/prevención & control , Humanos , Proteínas Serina-Treonina Quinasas , ARN Interferente Pequeño/metabolismo
18.
Bioengineered ; 13(4): 11122-11136, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35481488

RESUMEN

Alcoholic liver disease (ALD), with its increasing morbidity and mortality, has seriously and extensively affected the health of people worldwide. Caffeic Acid Dimethyl Ether (CADE) significantly inhibits alcohol-induced hepatic steatosis in vivo through AMP-activated protein kinase (AMPK) pathway, but its in-depth mechanism remains unclear. This work aimed to clarify further mechanism of CADE in improving hepatic lipid accumulation in ALD through the microRNA-378b (miR-378b)-mediated Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2)-AMPK signaling pathway. Here, we reported that the hepatic or serum triglyceride (TG), total cholesterol (TC), alanine aminotransferase (ALT), and aspartate transaminase (AST) levels were sharply escalated by ethanol while prominently decreased by CADE. Ethanol sharply up-regulated miR-378b expression while CADE effectively prevented the elevation of miR-378b in vivo. And treatment of CADE surely increased mRNA and protein expression of CaMKK2 as a kinase of AMPK and reduced lipid accumulation in the livers of alcohol-fed C57BL/6 mice. MiR-378b escalation exacerbated hepatic steatosis and inhibited CaMKK2-AMPK signaling, while miR-378b deficiency alleviated lipid accumulation and activated the CaMKK2 cascade. Furthermore, CADE alleviated the lipid deposition and reversed the disorder of CaMKK2-AMPK signaling pathway induced by miR-378b over-expression. However, knockdown of miR-378b eliminated the beneficial effect of CADE on lipid metabolism. In brief, our results showed that CADE ultimately improved hepatic lipid deposition by regulating the CaMKK2-AMPK signaling pathway through miR-378b.


Asunto(s)
Proteínas Quinasas Activadas por AMP , MicroARNs , Proteínas Quinasas Activadas por AMP/genética , Animales , Ácidos Cafeicos , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Etanol/toxicidad , Humanos , Lípidos , Éteres Metílicos , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo
19.
Nat Rev Urol ; 19(6): 367-380, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35474107

RESUMEN

In 2011, CAMKK2, the gene encoding calcium/calmodulin-dependent kinase kinase 2 (CAMKK2), was demonstrated to be a direct target of the androgen receptor and a driver of prostate cancer progression. Results from multiple independent studies have confirmed these findings and demonstrated the potential role of CAMKK2 as a clinical biomarker and therapeutic target in advanced prostate cancer using a variety of preclinical models. Drug development efforts targeting CAMKK2 have begun accordingly. CAMKK2 regulation can vary across disease stages, which might have important implications in the use of CAMKK2 as a biomarker. Moreover, new non-cell-autonomous roles for CAMKK2 that could affect tumorigenesis, metastasis and possible comorbidities linked to disease and treatment have emerged and could present novel treatment opportunities for prostate cancer.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Neoplasias de la Próstata , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Línea Celular Tumoral , Transformación Celular Neoplásica , Humanos , Masculino , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia
20.
Comput Math Methods Med ; 2022: 7187940, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309839

RESUMEN

Objective: To explore the functional role of Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in the progression of ovarian carcinoma (OC). Methods: RT-qPCR analysis and western blot were conducted to detect the mRNA and protein expression of CaMKK2, PI3K, PDK1 and Akt in OC tissues and cells, respectively. CCK-8 assay, transwell migration assay and flow cytometry were used to measure cell proliferation, migration and apoptosis, respectively. Results: CaMKK2, PI3K, PDK1 and Akt were highly expressed in OC tissues compared with the corresponding controls. CaMKK2 knockdown significantly suppressed the mRNA and protein expression of PI3K, PDK1 and Akt in HO8910 and OV90 cells. Moreover, CaMKK2 knockdown could dramatically repress cell proliferation, migration, and markedly elevate cell apoptosis in HO8910 and OV90 cells. Conclusions: CaMKK2 played a promotion role in OC progression via activating the PI3K/PDK1/Akt axis.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Neoplasias Ováricas/enzimología , Apoptosis/fisiología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/antagonistas & inhibidores , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Línea Celular Tumoral , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Biología Computacional , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...